data analysis

INDIFUN-AI

Bioindicators and Functional Biodiversity

Mechanisms underpinning the net removal rates of dissolved organic carbon in the global ocean

With almost 700 Pg of carbon, marine dissolved organic carbon (DOC) stores more carbon than all living biomass on Earth combined. However, the controls behind the persistence and the spatial patterns of DOC concentrations on the basin scale remain …

Driving forces of Antarctic krill abundance

Krill population model reveals recruitment is driven by intercohort competition and age-specific seasonal environmental forcings.

Gauge-and-compass migration: inherited magnetic headings and signposts can adapt to changing geomagnetic landscapes

For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited …

Project on Movement Ecology extended for a second phase

Our Collaborative Research Centre on 'Magnetoreception and Navigation in Vertebrates' has been extended for a seond phase

Estimation of functional diversity and species traits from ecological monitoring data

The rampant loss of biodiversity is starting to be recognized as a global crisis rivaling the climate emergency. To address this crisis, scientists need robust methods to measure the diversity in a system. Importantly, these methods should not only count species but capture the variety of different functions that the species in a system can perform. In this paper, we propose a machine learning method by which existing data from ecosystem monitoring can be reanalyzed to reveal changes of functional biodiversity over time.

Predicting performance of naïve migratory animals, from many wrongs to self-correction

Migratory orientation of many animals is inheritable, enabling inexperienced (naïve) individuals to migrate independently using a geomagnetic or celestial compass. It remains unresolved how naïve migrants reliably reach remote destinations, sometimes …

Growth, organic matter release, aggregation and recycling during a diatom bloom: a model-based analysis of a mesocosm experiment

Mechanisms terminating phytoplankton blooms are often not well understood. Potentially involved processes such as consumption by grazers, flocculation, and viral lysis each have different post-bloom consequences on the processing of the organic …

Story behind the paper: Optimal stock-enhancement of a spatially distributed renewable resource

When the watering can principle is not a good idea to manage your ecosystem

Shape matters: the relationship between cell geometry and diversity in phytoplankton

We analyse data on marine unicellular phytoplankton, exhibiting an astounding diversity of cell sizes and shapes. We quantify the variation in size and shape and explore their effects on taxonomic diversity. We find that cells of intermediate volume exhibit the greatest shape variation, with shapes ranging from oblate to extremely elongated forms, while very small and large cells are mostly compact. We show that cell shape has a strong effect on phytoplankton diversity, comparable in magnitude to the effect of cell volume, with both traits explaining up to 92% of the variance in phytoplankton diversity. Species richness decays exponentially with cell elongation and displays a log-normal dependence on cell volume, peaking for compact cells of intermediate volume.